Daha detaylı bilgiye ihtiyacınız varsa diyot.net site arama motoruyla ulaşabilirsiniz .
Binlerce konu başlığı , Şemalar PDF kitap ve ders notları .

MOSFET Metal Oksit Alan Etkili Transistör

MOSFET in anlamı, Metal Oksit Alan Etkili Transistör (Metal Oxide Field Effect Transistor) yada Geçidi Yalıtılmış Alan etkili Transistör (Isolated Gate Field Effect Transistor) dür. Kısaca, MOSFET, IGFET yada Surface Field Effect Transistör de denir.

MOSFET, JFET’ e pek çok yönden benzerlik gösterir. JFET’ de Gate Source ters polarmalanmış bir PN oluşturmaktadır. MOSFET’ de böyle değildir. MOSFET’ de gate öyle oluşturulmuşturki drain ile source arasındaki bölge üzerine silikon dioksit ve onun üzerine de gate elektrodu (metal plaka) konularak yapılmıştır. Böylece gate metal elektrodu ile drain ve source arasına bir yalıtkan konulmuş olur.

Buradaki yalıkan silikon dioksit dir. Bütün oksitler iyi birer yalıtkandır. Hatırlarsanız, oksitlenmiş kontaklardan elektrik akımı geçmez ve biz de oksitlenmiş yerleri temizleriz. Metal oksit ve yarı iletken ile bir Gate oluşturur ve MOSFET adının oluşmasını sağlar. Bu nedenle gate gerilimine JFET’ de olduğu gibi bir sınırlandırma konulmamıştır. Tabi bu teoriktir. Gate yalıtkanı o kadar incedir ki eğer bir koruma yoksa vücudumuzdaki gerilim bile bu yalıtkanı delmeye yeter.

Ayrıca bu yalıtkan yüzünden gate akımı neredeyse hiç yoktur ve giriş empedansı çok yüksektir. Tipik olarak gate akımı 10 -14 A (0,01piko amper) ve 10-14 ohm (10.000 Giga ohm). Yukarda belirttiğim gibi gate geriliminin sınırlı olmaması ayrıca MOSFET’ de iki durumda çalışma olanağı sağlar. Bunlar “Arttırılmış – Enhancement” ve “Azaltıcı – Depletion” çalışma şekilleridir. Enhancemen tipi bir MOSFET’ in iç yapısı ve sembolleri aşağıdaki şekilde görülmektedir.

mosfet

MOSFET’lerin sürülmesi

Güç Elektroniği bunalmis bildirdi: “Mos transistorlerin giriş empedansı gerçekten çok mu büyük.Güç elektroniğinde kullanılan Moslar için; Bazı kitaplarda ve tartışmalarda “Mos transistorlerin giriş empedansı çok büyüktür” şeklinde yanlış bir ifade kullanılır.

Burada yanlış olan giriş empedans kavramının giriş direnci ile karıştırılmasından kaynaklanır. Zira empedans alternatif akıma gösterilen zorluk ikeni direnc akıma gösterilen zorluk demektir. Giriş direnci 10Mohm olan bir düzenek, pek ala 1Khz de 100Ohm gibi empedans gosterebilir. Ancak giriş direnci gerçekten de 10Mohmdur.

Bu yanılgıdan dolayı da yeni başlayanlar Mosların çok kolay sürülebileceği sonucuna varırlar.

Moslar ne zaman kolay sürülür?Bir ampullu (ıstediğiniz kadar güçlü olsun) uzun aralıklarda
(1 kaç saniye gibi) yakıp söndüren bir devre yapacaksanız Mos ideal anahtar vazifesi görecektir ve çok kolay sürülür. Bunun için mosun Gate – Source uclarına eşik değerinin biraz üzerinde voltaj vermek / kesmek yeterli olacaktır ve kumanda sinyalini, gate ucuna seri 1Mohm direnç üzerinden bile verebilirsiniz.

Mosfetler, JFET transistörler gibi üç bacaklıdır. Bu bacaklar ; G (gate, normal transistörün base bacağı), S (source, kaynak) ve D (drain, normal transistörün kollektörü) bacaklarıdır. D ucu ile S ucunun çıkarıldığı  bögeye kanal denir. Mosfetlerde gate bacağı ile kanal bölgesi arasında silisyum nitrat ve silisyum oksit ile yalıtım yapılmıştır. Bu metal oksit tabaka çok ince olduğundan statik elektriğe karşı oldukça hassastır. Bu nedenle mosfetlerin kullanımı ve saklanmasında statik elektrik konusunda dikkatli olunmalıdır. Mosfetleri lehimlerken kullanılan havya mutlaka topraklı olmalı ve düşük güçte kullanılmalıdır. 

Mosfetlerin giriş empedansı yüksek, elektrodları arasında iç kapasitansları ise çok düşüktür. Mosfet transistörler, JFET transistörlerden ve normal transistörlerden daha yüksek frenkanslarda çalışabilirler. Mosfet transistörlerin güç harcamaları düşüktür ve mekanik dayanımları fazladır.

Mosfet kanal bölgelerinde kullanılan maddelere göre N tipi mosfet ve P tipi mosfet olmak üzere iki çeşittir. Çalışma şekline göre ise mosfetler; enhancement (çoğaltan - arttıran kanallı) mosfetler ve depletion (deplasyon - azaltan kanallı) mosfetler olarak iki çeşittir. Aşağıda n kanallı ve p kanallı mosfetlerin yapıları gösterilmiştir.

N Kanallı Mosfet
P Kanallı Mosfet
N Kanallı Mosfet Yapısı P Kanallı Mosfet Yapısı

Mosfet Çeşitleri

Deplation (Deplasyon, Azaltan Kanallı) Mosfetler

Deplasyon mosfetler normalde ''ON'' tipi mosfetlerdir, yani gate ucuna uygulanan gerilimin değeri 0 V iken S ve D uçları arasında bir miktar akım geçişi olur. Bu akım miktarı mosfetin gate bacağından uygulanan gerilim pozitif yönde arttıkça yükselir. Mosfetin gate bacağına uygulanan gerilim negatif yönde arttıkça ise S ve D uçları arasından geçen akım miktarı azalır. Aşağıda N kanallı ve P kanallı deplasyon mosfetlerin sembolleri gösterilmektedir.

N Kanallı 
Deplasyon Mosfet
P Kanallı 
Deplasyon Mosfet
N Kanallı Azaltan Mosfet
P Kanallı Azaltan Mosfet

N kanallı deplasyon mosfetlerde akım mosfetin D ucundan S ucuna doğru N tipi maddenin içinden geçer.

P kanallı deplasyon mosfetlerde ise akım tam tersine mosfetin S ucundan D ucuna doğru P tipi maddenin içinden geçer.

Enhancement (Çoğaltan Kanallı) Mosfetler

Enhancement mosfetler azaltan kanallı mosfetlerin aksine normalde ''OFF'' durumunda olan mosfetlerdir. Enhancement mosfetlerin G ucuna gerilim uygulanmadığı sürece D ve S uçları arasından akım geçmez. Enhancement mosfetlerin sembolleri aşağıda gösterilmiştir. 

N Kanallı 
Enhancement Mosfet
P Kanallı 
Enhancement Mosfet
N Kanallı Çoğaltan Mosfet
P Kanallı Çoğaltan Mosfet

Deplasyon tipi mosfetler ile enhancement tipi mosfetlerin sembolleri arasındaki tek fark D ve S uçları arasında kanalı temsil eden çizginin enhancement tipi mosfetlerin sembollerinde kesik çizgiler ile belirtilmiş olmasıdır. Bu sembolleştirmenin sebebi enhancement tipi mosfetlerin yapısından kaynaklanmaktadır. Enhancement tipi mosfetlerde, mosfetin D ve S uçları arasında fiziksel bir kanal yoktur. Bu nedenle enhancement mosfetlerin G uçlarına 0 V gerilim uygulandığında S ve D uçları arasında akım geçiişi olmaz, yani mosfet iletime geçmez. 

N kanallı enhancement mosfetlerin gate ucuna +1 V gerilim uygulandığında, N tipi maddenin birleşim yüzeyine yakın olan kısmında (-) yüklü elektronlar toplanır. Bu elektronlar akım geçişi için kanal oluşturur ve böyle mosfetin D ve S uçları arasında akım geçişi başlar. Çoğaltan kanallı mosfetin gate ucuna uygulanan gerilim pozitif yönde arttırıldığında akım geçişinin olduğu kanal da genişler ve D ve S uçları arasındaki akım miktarı artar.

P kanallı enhancement mosfetlerde ise durum terstir. Bu tip çoğaltan kanallı mosfetlerde gate ucuna uygulanan gerilim -1 V iken P tipi maddenin birleşim yüzeyine yakın olan kısmında (+) yükler toplanarak akım geçişi için kanal oluşturur, böylece mosfetin D ve S uçları arasında akım geçişi olur. P kanallı enhancement  mosfetlerin gate ucuna uygulanan gerilim negatif yönde arttırıldığında akım geçişinin sağlandığı kanal genişler ve D ve S uçları arasından geçen akım artar. 

[ Dosya pdf ]

DİRENÇ

POPÜLER KONULAR

PRATİK BİLGİLER

SAĞLAMLIK KONTROLÜ - TESTİ

POPÜLER PROJELER

TEKNOLOJİ SİTELERİ

POPÜLER SİTELER